Hyers-ulam Stability of Butler-rassias Functional Equation
نویسنده
چکیده
In 1940, Ulam [9] gave a wide ranging talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the following question concerning the stability of homomorphisms. Let G1 be a group and let G2 be a metric group with a metric d(·,·). Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the inequality d(h(xy),h(x)h(y)) < δ for all x, y ∈ G1, then a homomorphism H : G1 → G2 exists with d(h(x),H(x)) < ε for all x ∈ G1? The case of approximately additive functions was solved by Hyers [5] under the assumption that G1 and G2 are Banach spaces. Taking this fact into account, the additive Cauchy functional equation f (x + y) = f (x) + f (y) is said to have the Hyers-Ulam stability. This terminology is also applied to the case of other functional equations. For a more detailed definition of such terminology, one can refer to [4, 6, 7]. In 2003, Butler [3] posed the following problem.
منابع مشابه
Hyers-Ulam-Rassias stability of a composite functional equation in various normed spaces
In this paper, we prove the generalized Hyers-Ulam(or Hyers-Ulam-Rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.
متن کاملA Hyers-Ulam-Rassias stability result for functional equations in Intuitionistic Fuzzy Banach spaces
Hyers-Ulam-Rassias stability have been studied in the contexts of several areas of mathematics. The concept of fuzziness and its extensions have been introduced to almost all branches of mathematics in recent times.Here we define the cubic functional equation in 2-variables and establish that Hyers-Ulam-Rassias stability holds for such equations in intuitionistic fuzzy Banach spaces.
متن کاملA new method for the generalized Hyers-Ulam-Rassias stability
We propose a new method, called the textit{the weighted space method}, for the study of the generalized Hyers-Ulam-Rassias stability. We use this method for a nonlinear functional equation, for Volterra and Fredholm integral operators.
متن کاملHYERS-ULAM-RASSIAS STABILITY OF FUNCTIONAL EQUATIONS ON FUZZY NORMED LINER SPACES
In this paper, we use the denition of fuzzy normed spaces givenby Bag and Samanta and the behaviors of solutions of the additive functionalequation are described. The Hyers-Ulam stability problem of this equationis discussed and theorems concerning the Hyers-Ulam-Rassias stability of theequation are proved on fuzzy normed linear space.
متن کاملGeneralized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach
The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki 3 for additive mappings and by Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias 4 has ...
متن کاملThe Generalized Hyers-ulam-rassias Stability of a Quadratic Functional Equation
In this paper, we investigate the generalized Hyers Ulam Rassias stability of a new quadratic functional equation f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 4f(x)− 2f(y). Generalized Hyers-Ulam-Rassias Stability K. Ravi, R. Murali and M. Arunkumar vol. 9, iss. 1, art. 20, 2008 Title Page
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005